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Symmetry and phase transitions in decagonal quasicrystals 

D B Litvintf, V Kopsky$I/ and Joseph L Birmanf 
+ Department of Physics, The City College of the City Universit! of Yew York, 
Convent Avenue and  138th Street, New York, NY 10031, USA 
4 Department of Physics, The Pennsylvania State University, The Berks Campul ,  
PO Box 7009, Reading, PA 19610-6009, USA 

Received 14 January 1987 

Abstract. The  possible non-crystallographic point group of the decagonal quasicrystal 
phase of AI-Mn alloys has been shown by Bendersky to be either D,,, or C,,,,. For the 
physically irreducible representations of these groups,  we derive the Clebsch-Gordan 
products,  extended integrity bases, stability spaces and  tensorial covariants. The point 
groups which can arise in phase transitions are determined along with corresponding 
tensorial parameters which could drive the transition. I t  is shown that equilibrium tensorial 
properties whose components transform as  the components of the electrogyration o r  
elasto-optic tensors can distinguish between the D,,, and  C,,,,, point group symmetry of 
the decagonal phase. 

1. Introduction 

The decagonal or T-phase quasicrystal is a quasicrystal with one-dimensional transla- 
tional symmetry and tenfold rotational symmetry. Bendersky (1985, 1986) has shown 
that the non-crystallographic point group symmetry of this quasicrystal is either 

In this paper we examine the group theoretical properties of the physically irredu- 
cible representations (PIR)  of the point groups DIOh  and c l o h  and their implications 
for phase transitions and tensorial properties of quasicrystals with such point group 
symmetries. In 5 2 we define the P I R  of D loh  and Cloh, the Clebsch-Gordan series, 
Clebsch-Gordan products and the extended integrity bases for these point groups. 
The subgroups of Dloh  and  Cloh, and the stability spaces of their P IR ,  are derived in 
$ 3. We also determine in $ 3 the possible subgroup symmetries which can arise during 
a phase transition. In $ 4  we derive tensorial covariants which can be transition 
parameters and discuss the tensorial invariants which can distinguish between the DIOh  
and Cloh point group symmetry. 

DlOh( lo/  “lZf ) or Cl Oh( lo/ 1. 

2. Physically irreducible representations 

Generators of a set of physically irreducible representations ( P I R )  of the point groups 
Dlo  and C, ,  are given in table 1.  The non-standard indexing of the P I R  of the point 
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Table 1. Phqsically irreducible representations ( P I R )  of the point groups C,,, and D,, , ,  
s =sin 2 ~ 1 / 2 0  and c =cos 27r/20. 

Point group D, , (10,2,2,)  Point group Clo(1Oz) 

PI R 10; 2,  PI R 10; 

1 Dl 
1 Dz 
1 

1 
-1 

-1 - 1  

group C,, has been chosen to explicitly show relationships between the PIR of D l o  and 
Cl,,. The P I R  D,, i = l , 2 ,  and D,, i=3,4, of the point group D,, subduced onto the 
point group Clo are, respectively, the PIR D,, i = 1, 2, of the point group Clo .  The PIR 

D,, i=5 ,6 ,7 ,8 ,  of Dlo  subduced onto C l o  are, respectively, the P I R  D,,  i=5 ,6 ,7 ,8 ,  of 
the point group C l o .  The PIR of D l o h = D , , x i  and C , O h = C I O x i  are denoted, as is 
customary, by the symbols D: and 0;. 

The Clebsch-Gordan series for the P I R  of the point groups D,, and Clo are given 
in table 2. At the intersection of the ith row and the j th column are the indices k of 

Table 2, Clebsch-Gordan series for the P I R  of the point groups C,, and D,o.  

D I O  

1 2 3 4 5  6 7 8 

1 2 3 4 5  6 7 8 
1 4 3 5  6 7 8 

1 2 8  7 6 5 
1 8  7 6 5 

1 + 2 + 6  5t6 7 + 8  3 + 4 + 7  
1 + 2 + 5  3 + 4 + 8  7 + 8  

1 + 2 + 5  5+6 
1+2+6 

CIO 
1 2 5 6 7 8 

I 1 2 5 6 7 8 
2 1 8 7 6 5 
5 l+l+6 5+6 7 + a  2 + 2 + 7  
6 1 + 1 + 5  2 + 2 + 8  7 + 8  
7 1 + 1 + 5  5+6  
8 1+1+6 
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the P I R  which appear in the reduced form of the direct product D, x 0,: 

D , x D , = ~ o D ~ .  (1)  

If a specific P I K  appears more than once on the right-hand side of equation (1 ), the 
corresponding index k is repeated in table 2. This table also gives the Clebsch-Gordan 
series for the point groups Dloh and C l o h .  We have 

D : X D : = D ; X D ; = ~ O D ;  

D;  x D; = D; x D; = C O D ;  
and indices k are again found at the intersection of the ith row and j th  column of 
table 2. 

Table 3. Clebsch-Gordan products for the P I R  of the point group D,(, 

PIR Basis functions 

D6 

D- 

Dn 

We shall use the following notation for the basis functions of the P I R  defined in 
table 1. For the one-dimensional P I R  D,,  i = 1,2,  3 ,  4, of the point group D,,, and D,, 
i = 1,2, of the point group C l o ,  we denote the basis functions by X , ,  i = 1,2,3,4.  For 
the two-dimensional P I R  D,,  i = 5,6,7,8,  of both point groups Dlo  and C l o  we denote 
the basis functions as ( X , ,  Y , ) ,  i = 5,6,  7, 8. For the groups Dloh and C l o h ,  one includes 
a superscript '+' or '-' in the above notation for the basis functions of P I R  with the 
same superscript notation. 

The linear combinations of products of basis functions of P I R  D, and D, which are 
basis functions of the P I R  D,, appearing on the right-hand side of (1) are known as 
Clebsch-Gordan products (Kopsky 1976). The Clebsch-Gordan products for the P I R  

of the point groups Dlo  and C,,, are given, respectively, in tables 3 and 4. These same 
tables represent the Clebsch-Gordan products for the P I R  of the point groups DIOh 
and c l o h .  For P I R  0; appearing on the right-hand side of ( 2 a ) ,  one includes in tables 
3 and 4 the superscript '+' or '-' on all basis functions. For P I R  DL (see ( 2 b ) ) ,  one 
includes in tables 3 and 4 the superscript '+' on the first basis function and the 
superscript '-' on the second basis function, or vice versa, in each term of the 
Clebsch-Gordan products. 

An extended integrity basis of a polynomial algebra in a set of variables on which 
a finite group operates includes the ordinary integrity basis of invariants and the linear 
integrity basis of covariants (Kopsky 1975, 1979a, Patera er a1 1978). The latter are 
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Table 4, Clebsch-Gordan products for the P I R  of the point group C,l , .  

PI  R Basic functions 

defined as sets of covariants of a given type such that any other covariant of this type 
is expressible as a linear combination of the basic ones with invariants as coefficients 
of the combination. With the aid of the Clebsch-Gordan products we have derived 
the extended integrity basis for the point groups D l o h  and c l o h .  I n  table 5 we give the 
extended integrity basis for the point group Dloh, i.e. for the polynomial algebras 
where the set of variables are the basis functions of the PIR  of the point group D l o h .  
The extended integrity basis for the point group Cloh is given in table 6 ,  where that 
part of the table not explicitly given is identical with the corresponding part in table 
5. In both tables 5 and 6 we have used the shorthand notations P, and Qi, i = 1,2, . . . , 10, 
for polynomials which are defined in table 7. For typographical simplicity the basis 
functions have been entered with neither subscript nor superscript. The subscript and 
superscript of all basis functions in a specific row of tables 5 and 6 are that of the P I R  

indexing that row. 

3. Phase transitions 

In this section we determine the stability spaces of the P I R  of the point groups Dloh 
and C l o h ,  and consequently the possible subgroup symmetries which can arise via a 
phase transition. In figure 1 we show the coordinate system used and the axes of the 
twofold rotations denoted by 21‘’ and 2:’), j = 1,2, . . . , 5 .  In table 8 we list the elements 
of the point group Dloh and of the subgroups of Dloh .  The elements of the point group 
Cloh and of the subgroups of C,,,, are also found in this table. A superscript ‘ j ’ in the 
symbol of a subgroup in table 8, e.g. DYL, signifies that this symbol denotes five 
subgroups Dik’, j = 1 , 2 , .  . . ,5. Figures 2 and 3 give, diagrammatically, the relationships 
between the point groups DIOh and ClOh and their respective subgroups. 

The stability space of a P I R  D, of a group GI, with respect to a subgroup G of Go 
is that subspace of the space spanned by the basis functions of the P I R  D,, all vectors 
of which are invariant under G (Kopsky 1983). In  table 9 we list the stability spaces 
of all P I R  of the point group Cl()h with respect to all subgroups of Cloh. The one- 
dimensional stability spaces of one-dimensional P I R  are denoted by the symbol of the 
corresponding basis function. Two-dimensional stability spaces of two-dimensional 
P I R  are denoted by the symbol of the corresponding PIR .  
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Table 6. Extended integrity basis for the point group Cloh. The part of this table not 
explicitlq given is identical with the corresponding part of table 5. 

x: X Y  x ;  X ,  

Df 

D; 

X 
X' x:+ y: 

Ps. 9 s  
x'+ Y ' ,  
ps, Qs 
x'+ Y?,  
Pi09 910 
x'+ Y', 
Pi09 Qio 

X' 
X 2  
x2+ Y', 
Pi03 Q i o  
x'+ Y' ,  
Pia,  91; 
x'+ Y + ,  
P i a ,  Q i o  

x'+ Y ' ,  
Pro, Q i o  

X 

Ps. 9s 

Table 7. Polynomial abbreLiations used in tables 5 a n d  6 .  

PI = x 
p - x' - yz 
P 3 = X ' - 3 X Y '  

P s =  x s -  l 0 X 3 Y ' + 5 X Y '  
Pb = X b  - 1 5 x 4  Y'+ 15x' Y 4  - Yb 
P, = X 7 - 2 1 X ~ Y ' + 3 5 X '  Y 4 - 7 X Y 6  

PI, ,  = X " ' - 4 5 X 8  Y '+ 2 1 0 x 6 ~ 4 -  2 1 0 x 4  Y h + 4 5 X '  Y 8 -  Y'O 

Q i = Y  
Q2 = 2 X Y  
Q 3 = 3 X ' Y -  Y 3  
Q 4 = 4 X Y ( X ' -  Y ' )  
Q s = 5 X 4 Y - 1 0 X ' Y 3 +  Y'  
Q6 = 6 X 5  Y - 20X'  Y 3  + 6 X  Y' 
Q7 = 7 X h Y  - 3 5 X 4 Y 3 + 2 1 X '  Y 5 -  Y 7  
Q , = 8 X 7 Y  - 5 6 X s  Y 3 t 5 6 X 3  Y s - 8 X Y '  
Qq = 9 X h  Y - 8 4 X b  Y 3  + 126X' Y s  - 3 6 X ' Y - +  Y 9  

2 -  

P4= X 4 - 6 X 2 Y 2 +  Y 4  

P8 = X x  - 2 8 X 6  Y 2  + 70X' Y 4 -  28X' Yb+ Y b  
Ps= X y - 3 6 X '  Y'+ 126X' Y ' - 8 4 X 3  Y b + 9 X Y h  

Q ~ ( , =  I O X ~ Y -  1 2 0 ~ ~ ~ ~ ~  2 5 2 x 5 ~ s -  1zox3 y 7 +  Y ~ O  

The stability spaces of all P I R  of the point group DIOh are given in table 10 with 
respect to all subgroups of D,,,,. The one-dimensional stability spaces of one- 
dimensional P I R  are again denoted by the corresponding basis functions and two- 
dimensional stability spaces of two-dimensional P I  R by the symbol of the corresponding 
P I R .  The following notation is introduced to denote the one-dimensional stability 
spaces of two-dimensional PIR.  Let ekk) and e:", k = 1,2, . , . , 5, denote directions in 
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' 2 '  
V 2'r 

/ 

Figure 1. C,,,, and D,,, coordinate system. The z axis is perpendicular to the plane of 
the figure. 

the space spanned by the basis functions of a two-dimensional P IR .  The relative 
orientation of these directions is shown in figure 4. We denote the one-dimensional 
stability spaces of two-dimensional P I R  by E,'", E:'k '  and E,'".', i = 5 ,6 ,7 ,  8 
and  k = 1 , 2 , ,  . . ,5. The symbol ET:hi, for example, denotes the one-dimensional 
stability space in the space spanned by the basis functions of the P I R  D: which is 
along the direction defined by e\ki. These symbols arise in the notation for the 
one-dimensional stability spaces for sets of subgroups which are denoted by a single 
symbol, e.g. Ci:), j = 1,2, . . . , 5. The value of the superscript 'k'  depends on both the 
value of the index ' j '  of the set of subgroups and on the value of the subscript ' i '  of 
the stability space. The values of k = k (  i , j )  are given in table 11. For example, the 
value of the superscript k in the symbol for the stability space E l i A )  of the point group 
C:E2' is k = 3 since i = 5 and j = 2 .  

Central to the application of group theoretical criteria (Birman 1966, Goldrich and 
Birman 1968, Jaric and Birman 1977, Jaric 1981, 1982) to determine the possible 
symmetries which can arise via a continuous phase transition is the calculation of 
subduction frequencies. Subduction frequencies are the number of times the identity 
representation is contained in the P I R  0, of Go subduced onto a subgroup G of Go.  
The subduction frequency of a P I R  D, of Go with respect to the subgroup G is equal 
to the dimension of the stability space of D, with respect to G. Consequently, the 
subduction frequencies of the P I R  of the point groups Cloh and  D,Oh can be found 
from tables 9 and 10 where the stability spaces of the P I R  of the point groups c l " h  and 
Dloh are respectively given. 

For each P I R  of Cloh and Dloh we list in table 12 those subgroups, called epikernels, 
which satisfy the chain subduction criterion. These are the possible symmetries which 
can arise via a phase transition where the transition order parameters transform as 
basis functions of the corresponding P IR .  Among the subgroups which satisfy the chain 
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Table 8. Elements of the point group D,,,, and its subgroups. The index j takes the values 
j = l , 2  ? . . . ,  5.  

c I “ h i  lo,/ m, ) 

2 ‘ ”  

1 
- 

1 
2‘11 

1 
2‘1’ 

2‘11 
1 

1 
1 
1 

- 

211’ 

1 
“ I !  

1 
m l l i  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 

1 
1 
1 
1 
1 
1 
1 

subduction criterion listed in table 12, we have underlined for each P I R  that subgroup 
which satisfies the kernel-core criterion (Ascher 1977, Kopsky 1980, 1982, Litvin et a1 
1982). These subgroups are the kernels of the corresponding P I R .  We have also 
determined that all P I R  of ClOh and DIOh, except, of course, the identity representation, 
satisfy the Landau stability criterion and all P I R  satisfy the Lifshitz homogeneity 
criterion for phase transitions (Landau and Lifshitz 1958). 
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Figure 2. The lattice of subgroups of C,,,, 

Figure 3. The lattice of subgroups of D,,,,. 
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et’ ’  ,I 2 I 
x 

’\ t f 

Figure 4. Directions of vectors e’,’’ a n d  e : ’ ] ,  j = 1, 2 , .  . . , 5, in the two-dimensional space 
spanned by the basis functions of two-dimensional P I R .  

Table 11. The value of the index k = k ( i , j )  for specific values of the indices i and  j is 
given at the intersection of the i th row and  j t h  column. 

i 1 2 3 4 5 

5 1 3 5 2 4 
6 1 5 4 3 & 

7 1 2 3 4 5 
8 1 4 - 5 3 

-l 

7 

4. Tensorial covariants 

Tensorial covariants are linear combinations of components of a tensor which transform 
as basis functions of irreducible representations of a group. We derive here tensorial 
covariants for a wide variety of tensors and the P I R  of the point groups Cloh and DICh.  
In table 13 we list the tensors which we consider, their parity, intrinsic symmetry in 
Jahn (1949) notation and examples of corresponding physical tensors. We shall use 
the following conventional abbreviated notation for the components of symmetric 
second-rank tensors U , , :  

U 1  = U , ,  U 2  = U , ,  U 1  = uz: 
uq = 2u, ,  us = 2u,, U 6  = 2 4 , .  

The tensor covariants are derived using the tables of Clebsch-Gordan products. This 
is the same method which has been applied to obtain the tensorial covariants of the 
magnetic and non-magnetic cyrstallographic point groups (Kopsky 1979b). The 
tensorial covariants for the tensors given in table 13 for the point groups Dloh and  
Cloh are given, respectively, in tables 14 and 15. 
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Table 12. For each P I R  of the point groups C,,,, and D,,, we list those subgroups which 
satisfy the chain subduction criterion. The epikernel of each P I R  is underlined. 

1+ D,", 

5+ 
6+ 
7 +  
8+ 
1-  
2 -  
3- 

5+ 
6+ 
7+ 
81 
1- 
2- 

~ 

Table 13. List of tabulated tensors. 

Tensor Parity Jahn symbol Physical tensor 

E 

P 

d 

Q 

U 

S 

g 
A 

Relations 

d - P O u  
U - [PBP] 

s - [ u 3 u ]  
Q - u @ u  
g - U  
A - d  

Pseudoscalar, enanthiomorphism 
V Polarisation 
t v21 Strain, stress, permittivity 
V[ V'I 
[[ VZl21 
[ VI12 
[ v21 
V[ VZ] Electrogyration tensor 

Piezoelectric tensor, electro-optic coefficient 
Electric compliance or stiffness coefficient 
Electrostriction, elasto-optic or piezo-optic tensor 
Gyration tensor or optical rotary power 

The properties of a physical system in equilibrium must be invariant under the 
operations of its symmetry group, while the non-invariant properties must vanish. The 
invariant combinations of tensor components are given in the column under DT in 
both tabies 14 and 15. Equating all other covariants to zero, one obtains a set of 
conditions which the equilibrium tensor components must satisfy. These conditions 
are given in brackets in the D: column of both tables 14 and 15. 

There are only two types of tensors among those listed where the equilibrium form 
can be used to distinguish between the point groups Dloh and C l o h .  These are the 
tensors denoted by A and by q = Q""". 
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Table 15. Tensorial covariants for the point group C,,,. 

DTCX:) D T ( X ; )  DFCX;) D Y ( X ; )  

The electrogyration tensor is a physical tensor which transforms as the components 
of a tensor of type A. Gyration, G, is the magnitude of rotation of the plane of 
polarisation when a plane-polarised beam moves through a crystal (Nye 1964): 

G =g"L,LJ+Ah!lJ,EkL!L, (3)  

where i , j ,  k = 1,2,3,  E is an electric field and L is the distance transversed through 
the crystal. The gyration tensor g vanishes for both point groups Cloh and Dloh and 
A is called the electrogyration tensor. 

For the equilibrium form of the electrogyration tensor invariant under Dloh, we 
have from table 14 that A I 4 =  - A z s .  Consequently 

A,l,Z, = A , , , ,  I = - A , ( , , ,  = - A , ! , , ,  

G = 2AX(, : , (  E,L,  L, - E, LsL, ) .  

and 

(4) 

From table 15, the equilibrium form of the electrogyration tensor invariant under c , , h  

gives 

G = 2A,(  I; E,L, Lz - E ,  LxL: 1 + 2As( xz ,( E,L,L: - E,LJ Lz ) 

+ A , , , , , ( E , L : + E ~ L : ) + A  :,:: ,E,L:.  ( 5 )  

Comparing equations (4) and (5) one has that an experimental determination of, 
for example, the A,!, , ,  component of the electrogyration tensor can determine which 
of the two point groups, Cloh or DIoh ,  is the point group of the decagonal T-phase 
quasicrystal studied by Bendersky (1985, 1986). 

The electrostriction effect can also be used to distinguish between the point groups 
Cloh and D l o h .  The relationship between strain E and electric field E can be written as 

&,h =dykE,+Y~m,l , r ,E,Em (6) 
where d denotes the piezoelectric effect tensor which vanishes for both the point groups 
Cloh and D I O h  and y is the electrostriction effect tensor. The electrostriction tensor 
Y ( , m ) ( J k )  is symmetric with respect to the interchange of the indices i and m, and also 
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to the interchange of the indices j and k. Consequently the electrostriction tensor 
transforms as the tensor Q of table 13. A tensor of the type Q can be written as a 
sum of a symmetrical and  an  antisymmetrical part, i.e. Q = Qc"+ q, with q = Q""". 
From table 13 Q')m transforms as a tensor s, and from tables 14 and 15 one finds that 
the equilibrium form of the tensor s is the same for both point groups c , l ) h  and D I O h .  
It is the antisymmetrical part q = Q""" which can distinguish between these two point 
groups. 

The equilibrium form of the electrostriction tensor invariant under the point group 
DIOh is found from the equilibrium form of the tensors s and q in table 14. We obtain 
the following relationships, equation (6): 

For the point group C loh ,  the equilibrium form of the electrostriction tensor is found 
in table 15. The relationships, equation (6), are those given in equation ( 7 )  with the 
following additional terms. 

Experimental determination of any of these additional terms would then determine 
which of the two point groups, C,,, or D I O h ,  is the symmetry group of the decagonal 
T- phase quasicrystal. 
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